SMAUG
Simulating Machine Learning Applications on gem5-Aladdin
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 1234]
 NsmaugThe smaug namespace is the parent namespace of all C++ code in SMAUG
 Ngem5Contains utility functions for interacting with gem5
 NsmvThe smv namespace contains all code specific to the Smv backend
 CAvgPoolingOpImplements the arithmetic-average-pooling operator
 CBatchNormOpImplements the batch normalization layer
 CConcatOpConcatenates N Tensors along a specified axis
 CConvolutionOpThe base class for all 4D spatial convolution operators
 CDataflowGraphWriterDataflowGraphWriter writes the current network as a dot-graph file to the given ostream
 CDataOpExposes a Tensor as its only output
 CDebugStreamAn stream class to consume debug logs
 CDepthwiseConvolutionOpImplements the depthwise convolution operator
 CEltwiseAddOpAdds two Tensors elementwise
 CEltwiseMulOpMultiplies two Tensors elementwise
 CEltwiseOpThe base class of all elementwise operators
 CEluOpImplements the exponential linear unit function
 CFlattenOpFlattens each batch of a Tensor
 CFromDataTypeProvides compile-time conversion from SMAUG DataType to C type
 CFromDataType< Bool >
 CFromDataType< Float16 >
 CFromDataType< Float32 >
 CFromDataType< Float64 >
 CFromDataType< Int32 >
 CFromDataType< Int64 >
 CFusedActivationOpAn Operator fused with an activation function
 CGreaterEqualOpImplements an elementwise greater than or equal to operator
 CGreaterOpImplements an elementwise greater than operator
 CHardTanhOpImplements the hard tanh operator, which bounds the min and max value of the tanh operator
 CInnerProductOpImplements the inner product operator
 CLessEqualOpImplements an elementwise less-than-or-equal-to operator
 CLessOpImplements an elementwise less-than operator
 CMaxPoolingOpImplements the max-pooling operator
 CMergeOpForwards the first live input to its output
 CNetworkNetwork encapsulates all of the information SMAUG will use during execution: the overall computation graph of the model, all the operators and tensors, various housekeeping structures, and simulation information
 COperatorOperator is the base class for all graph operators supported by SMAUG
 CPaddingOpPad a given tensor in any number of dimensions with arbitrary size
 CPoolingOpImplements a pooling operator
 CReferenceBackendReferenceBackend provides reference implementations of all operators supported by SMAUG
 CReluOpImplements the rectified linear unit operator: max(slope * x, 0)
 CReorderOpImplements a Tensor reordering operation to convert between different DataLayouts
 CRepeatOpReplicates a Tensor's data among all dimensions
 CReshapeOpChanges the Tensor's shape while retaining the number of elements
 CSchedulerScheduler is responsible for running the Network
 CSeluOpImplements the scaled exponential linear unit function
 CSigmoidOpImplements the sigmoid operator, defined as 1/(1 + exp(-input))
 CSmaugTestThe Catch2 test fixture used by all C++ unit tests
 CSmvAcceleratorPoolImplements a pool of worker accelerators
 CSmvAvgPoolingOpAverage pooling operator on SMV
 CSmvBackendSmvBackend implements a set of models of optimized DL kernels that were taped out on a machine learning SoC by the Harvard Architecture, Circuits, and Compilers
 CSmvBatchNormOpSMV backend implementation of batch normalization
 CSmvConvolutionOpSMV backend implementation of convolution
 CSmvEltwiseAddOpElementwise addition on SMV
 CSmvEltwiseMulOpElementwise multiplication on SMV
 CSmvEluOpElementwise exponential linear unit on SMV
 CSmvGreaterEqualOpElementwise greater-than-or-equal-to operator on SMV
 CSmvGreaterOpElementwise greater-than operator on SMV
 CSmvHardTanhOpHard tanh operator on SMV
 CSmvInnerProductOpInner product operator on SMV
 CSmvLessEqualOpElementwise less-than-or-equal-to operator on SMV
 CSmvLessOpElementwise less-than operator on SMV
 CSmvMaxPoolingOpMax-pooling operator on SMV
 CSmvPoolingOpBase class for SMV pooling oeprators
 CSmvReluOpRectified linear-unit operator on SMV
 CSmvSeluOpElementwise scaled exponential linear unit on SMV
 CSmvSigmoidOpSigmoid linear-unit operator on SMV
 CSmvSoftmaxOpSoftmax operator on SMV
 CSmvTanhOpTanh operator on SMV
 CSoftmaxOpImplements the softmax operator
 CSplitOpImplements the split operator, which divides a Tensor into N output Tensors along a specified dimension
 CSwitchOpConditionally forwards an input to one of two outputs
 CTanhOpImplements the tanh operator
 CTensorTensor represents a single multi-dimensional array of data
 CTensorBaseThe base class of all Tensor objects
 CTensorIndexIteratorAn iterator over a multidimensional tensor's indices, accounting for data alignment padding
 CTensorIndicesAdditional metadata for edges in the graph
 CTensorRegionIndexIteratorA tensor index iterator that stays within a specified rectangular region
 CTensorShapeTensorShape describes the shape of a Tensor
 CThreadPoolA user-space cooperatve thread pool implementation designed for gem5 in SE mode
 CTiledTensorA multidimensional container of Tensors
 CToDataTypeProvides compile-time conversion from C types to SMAUG DataTypes
 CToDataType< bool >
 CToDataType< double >
 CToDataType< float >
 CToDataType< float16 >
 CToDataType< int32_t >
 CToDataType< int64_t >
 CToDataType< uint32_t >
 CToDataType< uint64_t >
 CUnaryOpBase class for all operators with one input
 CWorkspaceWorkspace is the container and owner of all Tensors and Operators in the Network
 C_activation_param_tParameters to the activation function hardware
 C_SamplingInfoSimulation sampling information maintained by the Operator and passed to the accelerated kernel
 CActivationInfoSpecifies an activation function and relevant parameters